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Abstract -The effects of lateral mass flux with prescribed temperature and velocity on vertical free con- 
vection boundary layers in a saturated porous medium at high Rayleigh numbers are studied analytically 
in this paper. Within the framework of boundary-layer theory, similarity solutions are obtained for the 
special case where the prescribed temperature and velocity of the fluid vary as ,¢~ and x ~" - t~z respectively. 
The effects of mass flux on surface heat-transfer rate and boundary-layer thickness are shown. Application 

to warm water discharge along a well or fissure to an aquifer of infinite extent is discussed. 

NOMENCLATURE 

A, constant defined by equation (3a); 
a, constant defined by equation (3b); 
Cp, specific heat of the convective fluid; 
f. dimensionless stream function defined by 

equation (10); 
[,,., lateral mass flux parameter; 
,q, acceleration due to gravity: 
K, permeability of the porous medium; 
k, thermal conductivity of the porous medium; 
L, length of the source or sink; 
rn, mass-transfer rate; 
n, constant defined by equation 13b): 
Q, over-all surface heat-transfer rate: 
q, local heat-transfer rate; 
Rax, modified local Rayleigh number, 

Rax =- p~,gflK[T~.-- T~lx/l~t; 
T, temperature: 
u, Darcy's velocity in vertical direction; 
r, Darcy's velocity in horizontal direction; 
x, vertical coordinate; 
y, horizontal coordinate. 

Greek symbols 

~, equivalent thermal diffusivity; 
/J, coefficient of thermal expansion; 
6, boundary-layer thickness; 
r/, dimensionless similarity variable defined 

by equation (9); 
r/~. value of q at the edge of boundary layer: 
0, dimensionless temperature defined by 

equation (11): 
2, constant defined by equation (3a); 
~, viscosity of convective fluid: 
p, density of convective fluid; 
tO, stream function. 

Subscript 

~c, condition at infinity; 
w, condition at the wall. 

* Professor. 

INTRODUCTION 

THE EFFECTS of blowing and suction along a vertical 
flat plate on free convection in air or water have been 
the subject of numerous investigations. Eichhorn [1] 
studied these effects for a class of problems where both 
wall temperature and the blowing or suction velocity 
are prescribed power functions of distance from the 
leading edge. Based on the boundary-layer approxi- 
mations, Eichhorn shows that similarity solutions for 
the problem are possible if the exponents in the 
prescribed power functions are related in a particular 
manner. Sparrow and Cess [2] studied the more 
general problem with arbitrary values of exponents by 
a perturbation method. The problem was also studied 
by Mabuchi [3] who used an integral method. 

The analogous problem of lateral injection or 
withdrawal of fluid along a vertical plane source or 
sink on free convection boundary layers in a porous 
medium at high Rayleigh numbers, where both the 
temperature distribution of the fluid along the plane 
source or sink (Tw) and its velocity distribution (v~,) are 
prescribed power functions of distance, is studied in 
the present paper. If the boundary-layer approxi- 
mations similar to those employed by Wooding [4], 
McNabb [5], Cheng and Minkowycz [6], and Cheng 
and Chang [7] are invoked, and if the prescribed 
power functions are given by Tw = T~ +_ A x  ~ and vw 
= ax", it is found that similarity solutions are possible 
if n = 0. - 1 I/2. The problem has a number of impor- 
tant engineering and geophysical applications. For 
example, the residual warm water discharged from a 
geothermal power plant is usually disposed of through 
subsurface reinjection wells which can be idealized as 
vertical plane sources in a porous medium. If the 
temperature of the injected fluid differs from that of the 
receiving groundwater in the rock formation, the 
injected fluid would experience a positive or negative 
buoyancy force [depending on the relative temperature 
difference) which results in a convective movement of 
groundwater near the well. Similarly, convection of 
groundwater also occurs along the vertical fissures or 
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cracks during tile natural recharge of aquifer, when- 
ever the tcnlperature of the groundv~atcr discharged 
fl'om the lissurcs and cracks differs from that of the 
rccci~ ing water in the aquifer. 

ANALYSIS 

Figure 1 shows the problem of recharge or with- 
drawal of fluids along a vertical plane source or sink 
embedded in a saturated porous medium, wherc the 
temperature along the source or sink is given by 7"., 
= 7', _~. Ax'  (with T, denoting tcmperature at infinity 
and A > 01 and the discharge or withdrawal rate is 
given by r,, = . . \ "wherc  a > 0 fl)r discharge of fluid 
a n d .  < 0 fl,r withdrawal of fluid. If v,.e assume that (i) 

T,,,,(xI / 
/ u 

V.,v(X) /I L v  

/ 

= -y  
0 

(,a) 

Fie;. l(a). Coordinate system for "r, > T~. 

0 ~ y  

~ \ \  . v 

T~(x) J 

v,,,. ( x ) I u 

(b) 

FI6. l lbl .  Coo rd ina te  system for  /~ < T , .  

the convective flow is due to the density difference 
between the source (or sink) and at infinity. (it) the 
temperature of the fluid is everywhere below the 
boiling point, liii) the convective fluid and the porous 
medium are everywhere in local thermodynamic 
equilibrium, (iv) properties of the fluid and the porous 
medium such as viscosity, thermal conductivity, ther- 
mal expansion coefficient, specific heats and per- 
meability arc constant, and (v) the Boussinesq approxi- 
mation is employed, it can be shown that the governing 
equations with boundary layer simplifications are 
given b.',' [6] 

f2~ ~,, fl.qK ?T  
= + . . . . .  . 11) 

~nF2 It ~'1" 

,'v" ~ \ ?.v ( x  , x .i" {2 ) 

where the '" + "" and "' - "" signs in equation (1) are for the 
cases of T,. > T,, (Fig. la) and T,,. < T~ (Fig. lb) 
respectively. In equations ( 1 ) and (2}, p , ,  I~ and fl are the 
density, viscosity, and the thermal expansion coef- 
ticient of the fluid: # is the gravitational acceleration: 
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K is the .permeability of the porous medium: :~ 
= k..(p , C p ) f  is the equivalent thermal diffusi~itv with 
k denoting the thermal conductivit~ of the porous 
medium and ( p ,  ('pls the density and specitic heat of 
the fluid: ~ is the stream function defined in the usual 
manner, i.e. u = (?~,.(y) and ~ = --(?~, ?xi where u 
and r are the Darcy's velocities in the \ and v 
directions. 

For the coordinate system shoran in Fig. 1. the 
boundary conditions are given by 

,'0 
y = O .  7"= T, =.4.\". I =  . . . .  ax". 

fx 
i3a, bl 

y---,-.t, T =  71,. u = - -  = 0 .  (4a.b) 
?~.. 

where A > 0 and the "' + "" and " ' - "  signs in equation 
13a) are for Figs. l{a) and Ib). respectively. With the 
exception of boundary condition (3bl, equations 
(ll  (4) are identical to the governing equations and 
boundary conditions for the problem of free con- 
vection about a vertical flat plate embedded in a 
porous medium where similarity solutions have been 
found [6]. It can be shown that similarity solutions to 
equations (I)--{4) exist i fn = ( ) . -  1 I.,"2, and that under 
such a restricted condition the governing equations 
can be transformed into 

. I "  - o '  = O .  

1+ , ; ,  
0 "  + • f i r -  ,;:f't~ = O, 

"1 

{51 

(6) 

with boundary conditions given by 

r / = 0 ,  0 =  1, f= . / i , . ,  17a, bl 

~I ~ ~c. 0 = 0 .  1 " = 0 ,  18a. b) 

where the similarity variables ~l.l, and 0 are defined by 

- I  p~'gflKI'F~-- 7~.1- ] ' 2  (9, 
q - l .  / ~ : c x  - , v .  

[ ~P~gflKIT~-- T, i x l t 2  . . . . . .  
~P = II J (q) ,  (10} 

T - I ,  
O(q ) = ¢ 11 ) 

7~,.- T, 

and £,. = -2a./[Tp., gflKA.IL]~2(I +21 which is pos- 
itive for the withdrawal of fluid and negative for the 
discharge of fluid. In terms of the new variables, the 
vertical and horizontal velocity components are given 
by 

,o~ 9fll7~.- T, IK . f ' l r / ) .  112)  1t : . . . . . . . . . . . . .  

P 

and 

l tl.x 1 
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With the aid of boundary condition (8), equation (5) 
can be integrated to give 

f ' - O = O ,  (14) 

which shows that vertical velocity and temperature 
have the same shape. 

R E S U L T S  A N D  D I S C U S S I O N  

Equations (14), (6). (7) and (8a) are the governing 
equations and boundary conditions for the problem, 
which can be integrated numerically by means of the 
Runge-Kutta  method incorporated with the shooting 
technique for a systematic guessing of 0'(0). Numerical 
results forf(t/). O'(~),f'(t/) or 0(t/) for selected values of 
2 with f,, = - 1 . 0  to 1.0 are shown in Figs. 2-4. It is 
noted that .f~, = 0 corresponds to the case of an im- 
permeable vertical fiat plate embedded in a porous 
medium [6]. 

Figure 2 shows that the value of 0 or f '  decreases 
from 1 to 0 as t/ is increased from zero at different 
values off,.. If the edge of the boundary layer thickness 
(denoted by t/~) is defined as the value oft /where 0 (or 
f ' )  has a value of 0.01, it follows from equation (9) that 

° . . . . . . . .  

, ,  

\ \ \ \  
t~ 0.4 ~ \ \ \ \ \ \ \ \ \ \ " x  0.2 

I \ \ \ \ \ \ \ \ \ "~ '- , ,  .- o.4 

I o°I 
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FIG. 2. Values ofO a n d f '  vs r/: (a) Un i fo rm wal l  temperature 
d is t r ibut ion (.,i. = 0), (b) Un i fo rm surface heat f lux (2 = 1/3), 

and (c) Un i fo rm wal l  velocity d is t r ibut ion (2 = 1). 
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the expression for the boundary-layer thickness ,5 is 

6 % 
(15) 

X -- (Rax) w2` 

where Rax=p=gKf lx lTw-T~ol / l~  is the modified 
Rayleigh number, and the value of t/6 for selected ,;. is 
presented in Table 1 and plotted in Fig. 5, where it is 
shown that the boundary-layer thickness decreases as 
the value of f,,. increases from - 1 . 0  to 1.0. The 
expression for local heat flux can be shown to be 

q(x, y) = - k - -  = kA 3'2 -0 ' ( t / ) ] ,  
c y L /~  J 

(16) 

where the value of -0'(t/) is plotted in Fig. 3, which 
shows that its value decreases from a maximum value 
to zero as t/is increased from zero. The expression for 
surface heat flux q(x, 0)is given by equation (16) with 
t /=  0 and the total surface heat rate (per unit width 
perpendicular to the x- y plane) along the plane source 
or sink with a height L is 

f O "  1"7 
e =  O ) d x  = - 

L #c( 1 

x / ~ 2 \ t+3.~ i~.)L~-[- 0'(0)], (17) 

where the value of [ - 0'(0)] for selected values of 2 is 
tabulated in Table 1 and is plotted in Fig. 6, which 
shows that heat-transfer rate increases as the value of 
f,. is increased. Consequently, the values of q(x) and Q 
increase as the value off~, is increased. 

Table 1. Values of - if(0) and ~I~ for the cases of uniform wall 
temperature distribution (2 = 0), uniform surface heat flux 

(.;. = 1/3) and uniform wall velocity distribution I:. = 1 ) 

- 0 ' ( 0 )  ~1~ 

f,. 2 = 0  2=1..3 ;,.=1 2=0).=1,:3;, .=1 

- 1.0 0.2043 0.3971 0.6180 7.84 7.58 7.20 
-0.8 0.2432 0 .4416  0.6770 7.58 7.21 6.67 
- 0.6 0.2865 0 .4917  0.7440 7.29 6.81 6.12 
-0.4 0.3345 0 .5476  0.8198 6.98 6 .40  5.59 
- 0.2 0.3870 0 .6096 0.9049 6 .65  5 .98 5.08 

0 0.4438 0 .6776  1.000 6.31 5 .57  4.60 
0.2 0.5050 0 .7517  1.104 5.96 5 .17 4.16 
0.4 0.5701 0.8316 1.219 5.61 4 .79  3.77 
0.6 0.6389 0.9169 1.344 5.28 4 .44  3.42 
0.8 0.7111 1.007 1.477 4.96 4.11 3.12 
1.0 0.7863 1.102 1.618 4.65 3.81 2.85 

With the aid of equations (13) and (8b), the horizon- 
tal velocity component at infinity is given by 

v~ = -~c~P~'gflKITW-L izx T:d]  1'2(I + ) ' ) f ( ~  ), (18) 

which can be positive or negative depending on the 
sign off(oo), which in turn, depending on the value of 
fw. Although f(oo)  is positive for the range of para- 
meters considered, as is shown in Fig. 4, it could be 
negative for sufficiently large negative values off~,, i.e. 
for strong discharge rates. 
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1.16.3. Values of - 0 '  ss q: (a) Uniform wall temperature distribution (2 = 0), Ib) Uniform surface heat 
flux (2 = 1.3). and (c) Uniform wall velocity distribution (). = II. 
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F I o .  4. Va lues  o f f v s  r/: (a) U n i f o r m  wall temperature distr ibution (,;. = 0). Ib) U n i f o r m  sur face  heat f l ux  
(), = 13) .  and  Ic) U n i f o r m  wall velocity distribution (2 = I). 

Finally,  the total mass-transfer rate (per unit width la) ,;. = 0 corresponding to the case of  un i form wail 

perpendicular  to the x- .v  plane) a long  a vertical  plane 
source  or sink with a length L is 

l i , ~  p ,  r ix ,  O)dx  = 2 p ~ a L  2 '11+2),  (19) 

where  we have  made  use of  equat ion  (3b). 
As is discussed in [6] .  the range of  ). for which the 

problem is phys ica l ly  realistic is 0 ~< ). ~<1 which  
fo l lows  from the s i m u l t a n e o u s  cons idera t ion  of  equa-  
t ions  (13) and (15). W e  shall  n o w  discuss  the var iat ion  
of  ?) and q(x, O) as given by equat ions  (15) and (16). for 
the special  cases of  2 = O, 1:3, and I. 

t emperature  with r.. ~ x -  1,.2, ,5 ~ x 1.2 and q 
- 1.'2 ~ X  

( b ) ) .  = 1/3 co r r e spond ing  to the case of  uni form 

heat flux with t'w ~ x - I 3 ,  7-., ~ x 1'3 and 6 
x 1.:3. 

( c ) ) .  = 1 co r r e spond ing  to the case of uni form wall 

veloc i ty  wi th  T . ,  ~ x .  6 = cons tant  and q ~ x. 

To  gain some insight on the m a g n i t u d e  of  var ious  
physical  quanti t ies ,  cons ider  the d ischarge  of warm 

geo(hermal  water  at 90°C (i.e,). = 01 f rom a l issure 
crack or  well  of 500 m to an aquifer at 15 C with.f , .  
= 1.0. We used the fo l l owing  value  of  phys ica l  proper -  

ties for computat ions :  p ,  = 0 . 9 2  x 106g,m 3. ( ' I ,=  
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0.7 

,£ : 

o3 i 
-I.0 -'0~8 -016 -014 -~2 0 012 0'.4 0~6 0'.8 I.'(3 

(Discharge) fw (Withdrowol) 

FIG. 5. Effect of mass transfer on boundary-layer thickness. 

1 cal/g°C, k = 0.58 cal/s°C m, f l =  2.8 x 10-4/°K, g = 
9.8 m/s z, # = 0.68 g/s m and K = 10-1° m 2. From the 

definition off~. and equation (19), we found that the 
discharge rate is approximately 45 gal/h per meter 
width perpendicular to the x - y  plane. The correspond- 
ing boundary-layer thickness as given by equation (I 5) 
is approximately 30 m at x = 500 m. 
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FIG. 6. Effect of mass transfer on surface heat-transfer rate. 
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INFLUENCE DU FLUX MASSIQUE SUR LES COUCHES LIMITES DE CONVECTION 
NATURELLE DANS UN MILIEU POREUX ET SATURE 

R~ume--On 6tudie analytiquement les effets d'un flux massique lat6ral "a temperature et vitesse donn6es, 
sur des couches limites de convection naturelle dans un milieu poreux satur6, a des nombres de Rayleigh 
importants. Darts le cadre de la th6orie de la couche limite, des solutions de similitude sont obtenues 
dans le cas sp6cial off la teml~rature et la vitesse du fluide varient respectivement comme x ~ et x ~a- 1),2. 
On montre l'effet du flux massique sur le transfert thermique parietal. On discute rapplication a la 

d6charge d'eau chaude le long d°un puits ou d'une fissure d'un aquifere d'6tendue infinie. 

DER EINFLUSS EINES LATERALEN MASSENAUSFLUSSES 
AUF DIE GRENZSCHICHTEN BEI FREIER KONVEKTION IN 

EINEM GES/~TTIGTEN POROSEN MEDIUM 

Z t m m ~ f a s ~ m g - - E s  wird der EinfluB eines lateralen Massenausflusses mit vorgeschriebener Tem- 
peratur und Geschwindigkeit auf die Grenzschichten bei freier Konvektion in einem ges/ittigten por6sen 
Medium bei hohen Rayleigh-Zahlen analytisch untersucht. Fiir den speziellen Fall, dab sich Temperatur 
und Geschwindigkeit des Fluids mit x a bzw. x ~a-t~/2 ver/indern, werden Aehnlichkeitsl6sungen im 
Rahmen der Grenzschichttheorie abgeleitet. Der EinfluB des Massenausflusses auf den W~/rmeiibergang 
an der Oberfl/iche und die Grenzschichtdicke wird aufgezeigt. Die Anwendung auf die Warmwasserabgabe 

I/ings einer Bohrung oder eines Spaltes in ein unendlich ausgedehntes Aquifer wird diskutiert. 
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K~IH~IHHE FIOFIEPEHHOFO HCYEHEHH,q MACCBI HA 
FIOF'PAHHHHB]E C3"IOH FIPH CBOBO~HO~ KOHBEKUHH B HACblI.I.IEHHO~ 

FIO PHCTOI~I CPE,~E 

A m m T a u m ~ - - F I p o B e ~ e H o  TeopeTHqecKoe H3y~eHne a ~ . ~ . . n  n o n ep e~Ho ro  IIOTOKa MaCCbl npH 
aaaaHno~ TeMnepaType n CKOpOCTH Ha aepTHKan~Hbxe norpannt tHble  cnoH a HaCblIIIeHHOI~ IIOpHCTOf[ 
Cpe~e IIpH HI~II4HHH CBO60]LHOI~ KOHBeKIJ, HH H 6OnbtUHX qHcnax Peaea. B paMKaX TeopHH n o r p a H ~ -  
HOrO cJIO~[ IIOJlyqeHbl aBTOMO~eflbHble pemeHHa iIJl~ CIIeHHaflbHOFO c~y~aa ,  KOrJ1a 3a~IaHHRR TeM- 
n e p a T y p a  H CKOpOCTb )KH,CtI(OCTH H3MeH.qIOTCg, COOTBeTCTBeHHO, KaK X ~ H X ¢~- ~)/2. l ' [oxa3aHo BJIH~[HIIC 
rIOTOKa MaCCbl Ha HHTCHCHBHOCTb rIOBepxHOCTHOrO Tenaoo6MeHa Id TO]IIII, HHy rlOl'paHI4qHoro CIlO~l. 
PacCMaTpHBaeTCfl c~yqa~  nCTe~eHnfl HarpeToi~ BOZlb[ nO CKBa~HHe HnH Rlenn B 6eC~OHeqnbIfl nnacT.  


