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Abstract -The cffects of lateral mass flux with prescribed temperature and velocity on vertical free con-
vection boundary layers in a saturated porous medium at high Rayleigh numbers are studied analytically
in this paper. Within the framework of boundary-layer theory, similarity solutions are obtained for the
special case where the prescribed temperature and velocity of the fluid vary as x* and x'*~!** respectively.
The effects of mass flux on surface heat-transfer rate and boundary-layer thickness are shown. Application

to warm water discharge along a well or fissure to an aquifer of infinite extent is discussed.

NOMENCLATURE

constant defined by equation (3a);
constant defined by equation (3b);
specific heat of the convective fluid;
dimensionless stream function defined by
equation (10);

lateral mass flux parameter;

acceleration due to gravity:

permeability of the porous medium;

thermal conductivity of the porous medium;

length of the source or sink;
mass-transfer rate;

constant defined by equation (3b):
over-all surface heat-transfer rate:
local heat-transfer rate;

modified local Rayleigh number,
Ra, = p . gBKIT,— T, |xjux:
temperature;

Darcy’s velocity in vertical direction;
Darcy’s velocity in horizontal direction;
vertical coordinate;

horizontal coordinate.

Greek symbols

a, equivalent thermal diffusivity;

B, coefficient of thermal expansion;

d, boundary-layer thickness;

7 dimensionless similarity variable defined
by equation (9);

Nse value of # at the edge of boundary layer;

0, dimensionless temperature defined by
equation (11);

2 constant defined by equation (3a);

#, viscosity of convective fluid:

o density of convective fluid:

U, stream function,

Subscript

x,  condition at infinity;

w, condition at the wall.
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INTRODUCTION

THE EFFECTS of blowing and suction along a vertical
flat plate on free convection in air or water have been
the subject of numerous investigations. Eichhorn [1]
studied these effects for a class of problems where both
wall temperature and the blowing or suction velocity
arc prescribed power functions of distance from the
leading edge. Based on the boundary-layer approxi-
mations, Eichhorn shows that similarity solutions for
the problem are possible if the exponents in the
prescribed power functions are related in a particular
manner. Sparrow and Cess [2] studied the more
general problem with arbitrary values of exponents by
a perturbation method. The problem was also studied
by Mabuchi [3] who used an integral method.

The analogous problem of lateral injection or
withdrawal of fluid along a vertical plane source or
sink on free convection boundary layers in a porous
medium at high Rayleigh numbers, where both the
temperature distribution of the fluid along the plane
source or sink (7,,) and its velocity distribution (v, ) are
prescribed power functions of distance, is studied in
the present paper. If the boundary-layer approxi-
mations similar to those employed by Wooding [4],
McNabb [5], Cheng and Minkowycz [6], and Cheng
and Chang [7] are invoked, and if the prescribed
power functions are given by T, = T, + Ax* and v,,
= ax”, it is found that similarity solutions are possible
if n = (A—1)/2. The problem has a number of impor-
tant engincering and geophysical applications. For
example, the residual warm water discharged from a
geothermal power plant is usually disposed of through
subsurface reinjection wells which can be idealized as
vertical plane sources in a porous medium. If the
temperature of the injected fluid differs from that of the
receiving groundwater in the rock formation, the
injected fluid would experience a positive or negative
buoyancy force (depending on the relative temperature
difference) which results in a convective movement of
groundwater near the well. Similarly, convection of
groundwater also occurs along the vertical fissures or
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cracks during the natural recharge of aquifer. when-
ever the temperature of the groundwater discharged
from the fissures and cracks differs from that of the
receiving water in the aquifer.

ANALYSIS

Figure 1 shows the problem of recharge or with-
drawal of fluids along a vertical plane source or sink
cmbedded in a saturated porous medium. where the
temperature along the source or sink is given by T,
=T, = Ax* (with T, denoting temperature at infinity
and A > 0) and the discharge or withdrawal rate is
given by = ux" where ¢ > 0 for discharge of fluid
and u < 0 for withdrawal of fluid. If we assume that (1)

FiG. lta). Coordinate system for T, > T

'y

b
Fi1G. 1ib). Coordinate system for 7, < T,

the convective flow is due to the density difference
between the source (or sink) and at infinity. (i1) the
temperature of the fluid is everywhere below the
boiling point, (ii1) the convective fluid and the porous
medium are everywhere in local thermodynamic
equilibrium, (iv) properties of the fluid and the porous
medium such as viscosity. thermal conductivity, ther-
mal expansion coefficient. specific heats and per-
meability are constant. and (v) the Boussinesq approxi-
mation is employed, it can be shown that the governing
equations with boundary layer simplifications are
given by [6]
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where the "+ “and * — “signs inequation (1) are for the
cases of T, > T, (Fig. la) and T, < T, (Fig. 1b)
respectively. Inequations(1)and (2). p, . and f§ arc the
density. viscosity, and the thermal expansion coef-
ficient of the fluid: ¢ is the gravitational acceleration:

K 1s the permeability of the porous medium: x
= k:(p, C,);1s the cquivalent thermal diffusivity with
k denoting the thermal conductivity of the porous
medium and (p, C,), the density and specific heat of
the fluid: ¢ 1s the stream function defined in the usual
manner, 1.c. v = (CY vy and ¢ = - (Y Cx) where u
and ¢ are the Darcy’s velocities in the v and v
directions.

For the coordinate system shown in Fig. 1. the
boundary conditions are given by

cw

X

v=0. T=T, =Ax". = = ax".

{3a.b)

R
-— = 0. {da.b)

U=
oy

where A > 0 and the "+ and " —" signs in cquation
(3a) are for Figs. 1(a) and (b). respectively. With the
exception of boundary condition (3b), cquations
(1) (4) are identical to the governing equations and
boundary conditions for the problem of free con-
vection about a vertical flat plate embedded in a
porous medium where similarity solutions have been
found [6]. It can be shown that similarity solutions to
equations (1)--(4) exist if n = (4 —1);2, and that under
such a restricted condition the governing equations
can be transformed into

- =0, (5)

1+,
0 o= =0, (6)

with boundary conditions given by
0=1 f=f,,
=0 (=0,

n =0, {7a.b)

N . (8a.b)

where the similarity variables . /. and € are defined by

JGBKIT.— T, |'?
r7=[8 gﬁl o 9
] HAX .
70 gBKI T~ T,ix7" 2
o S, (10)
i
0(n) r=r (11)
(L
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and f, = —2ai[2p, gBKA:u]' *(1 + /) which is pos-
itive for the withdrawal of fluid and negative for the
discharge of fluid. In terms of the new variables, the
vertical and horizontal velocity components are given
by

pr9PT T, 1K

- f). (12}
ft

U=

and

x KT“'—TX 12 - - o
l’=1,"2rlp—g[-’,—I -— —'] [(1-—/.);1f’—(1+/.)_f]‘

(13)
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With the aid of boundary condition (8), equation (5)
can be integrated to give

f—6=0, (14)

which shows that vertical velocity and temperature
have the same shape.

RESULTS AND DISCUSSION

Equations (14), (6). (7) and (8a) are the governing
equations and boundary conditions for the problem,
which can be integrated numerically by means of the
Runge-Kutta method incorporated with the shooting
technique for a systematic guessing of '(0). Numerical
results for f(n). 0(n), f'(n) or B(n) for selected values of
A with f,, = —1.0 to 1.0 are shown in Figs. 2-4. It is
noted that f,, = 0 corresponds to the case of an im-
permcable vertical flat plate embedded in a porous
medium [6].

Figure 2 shows that the value of 0 or f* decreases
from 1 to 0 as n is increased from zero at different
values of f,,. If the edge of the boundary layer thickness
(denoted by #;) is defined as the value of n where 0 (or
f') has a value of 0.01, it follows from equation (9) that
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FIG. 2. Values of 6 and f' vs : (a) Uniform wall temperature
distribution (4 = 0), (b) Uniform surface heat flux (4 = 1/3),
and (c) Uniform wall velocity distribution (4 = 1).
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the expression for the boundary-layer thickness ¢ is
é s

x  (Ra )"

(15)

where Ra, = p, gKBx|T,— T,ljux is the modified
Rayleigh number, and the value of »; for selected 4 is
presented in Table 1 and plotted in Fig. S, where it is
shown that the boundary-layer thickness decreases as
the value of f, increases from —1.0 to 1.0. The
expression for local heat flux can be shown to be
12 351
&ﬂg}xTT—wm,
pua
(16)
where the value of —0'(n) is plotted in Fig. 3, which
shows that its value decreases from a maximum value
to zero as n is increased from zero. The expression for
surface heat flux ¢(x,0) is given by equation (16) with
n =0 and the total surface heat rate (per unit width

perpendicular to the x- y plane) along the plane source
or sink with a height L is

L L

0 ot

cT
q{x,y)= —k (._ - kAa;z[
¢y

1+3i

2 1+34

where the value of [ — 6(0)] for selected values of 4 is
tabulated in Table | and is plotted in Fig. 6, which
shows that heat-transfer rate increases as the value of
1. 1s increased. Consequently, the values of g(x) and Q
increase as the value of f,, is increased.

Table 1. Values of — #'(0) and 7, for the cases of uniform wall
temperature distribution (4 = 0), uniform surface heat flux
(# = 1/3) and uniform wall velocity distribution (£ = 1)

- 0) Ma

fu A=0 42=13 r=1 Ji=02=134=1
-1.0 0.2043 03971 06180 784 7.58 720
—-0.8 0.2432 0.4416 06770 758 721 6.67
—-0.6 0.2865 04917 07440 729 681 6.12
—-04 0.3345 05476  0.8198 698 640 5.59
—-02 03870 0.6096 09049 665 598 508
0 04438 0.6776 1.000 6.31 557 460
02 05050 0.7517 1.104 596 517 416
04 05701 0.8316 1.219 561 479 3.77
0.6 0.6389 09169 1.344 528 444 342
08 0.7111 1.007 1.477 496 4.11 3.12
1.0 0.7863 1.102 1.618 465 381 285

With the aid of equations (13) and (8b), the horizon-
tal velocity component at infinity is given by

o, = i #=9PKIT. Tl

1:2
} (I+24)f(oc), (18)

which can be positive or negative depending on the
sign of f(c0), which in turn, depending on the value of
f. Although f(oc) is positive for the range of para-
meters considered, as is shown in Fig. 4, it could be
negative for sufficiently large negative values of f,, i.e.
for strong discharge rates.
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{(b) A=1/3
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F1G. 3. Values of — 8 vs n: (a) Uniform wall temperature distribution (2 = 0), (b) Uniform surface heat
flux (4 = 1:3), and (¢) Uniform wall velocity distribution (4 = 1).
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FiG. 4. Values of fvs n: (a) Uniform wall temperature distribution (4 = 0). (b) Uniform surface heat flux
(# = 1.3). and (¢) Uniform wall velocity distribution (2 = 1).

Finally, the total mass-transfer rate (per unit width
perpendicular to the x—y plane) along a vertical plane
source or sink with a length L is

~ il

m=p, '1'1x.0)dx =2p,al 2 A+4). (19)

JO
where we have made use of equation (3b).

As is discussed in [6]. the range of 2 for which the
problem is physically realistic is 0 < 4 <1 which
follows from the simultaneous consideration of equa-
tions (13) and (15). We shall now discuss the variation
of 4 and ¢(x, 0) as given by equations {15) and (16). for
the special cases of A =0.13.and I.

(a) 4 = 0 corresponding to the case of uniform wall

temperature with ¢, ~ x~ ! 2 and ¢
-1/2

Lo~ x

(b) 2 = 1;3 corresponding to the case of uniform
heat flux with ¢, ~x~ '3 T, ~x'* and &
~ x1i3

(c) 4 = 1 corresponding to the case of uniform wail
velocity with 7, ~ x. 8 = constant and g ~ x.

To gain some insight on the magnitude of various

physical quantities, consider the discharge of warm
geothermal water at 90°C (i.e. 2 = 0) from a fissure
crack or well of 500 m to an aquifer at 15 C with f,
= 1.0. We used the following value of physical proper-
tics for computations: p, =092 x 10°g:m?. .=
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FIG. 5. Effect of mass transfer on boundary-layer thickness.
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F1G. 6. Effect of mass transfer on surface heat-transfer rate.

1 cal/g°C, k =058 cal/s°Cm, § =28 x107%/°K, g =
9.8 m/s?, u=068g/sm and K = 107°m?2 From the
definition of f,. and equation (19), we found that the
discharge rate is approximately 45 gal/h per meter
width perpendicular to the x—y plane. The correspond-
ing boundary-layer thickness as given by equation (15)
is approximately 30 m at x = 500 m.
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INFLUENCE DU FLUX MASSIQUE SUR LES COUCHES LIMITES DE CONVECTION
NATURELLE DANS UN MILIEU POREUX ET SATURE

Résumé —On étudie analytiquement les effets d'un flux massique latéral a température et vitesse données,
sur des couches limites de convection naturelle dans un milieu poreux saturé, a des nombres de Rayleigh
importants. Dans le cadre de la théorie de la couche limite, des solutions de similitude sont obtenues
dans le cas spécial ou la température et la vitesse du fluide varient respectivement comme x* et x'4 =172,
On montre 'effet du flux massique sur le transfert thermique pariétal. On discute I'application a la
décharge d’eau chaude le long d'un puits ou d'une fissure d'un aquifére d'étendue infinie.

DER EINFLUSS EINES LATERALEN MASSENAUSFLUSSES
AUF DIE GRENZSCHICHTEN BEI FREIER KONVEKTION IN
EINEM GESATTIGTEN POROSEN MEDIUM

Zusammenfassung —Es wird der EinfluB eines lateralen Massenausflusses mit vorgeschriebener Tem-
peratur und Geschwindigkeit auf die Grenzschichten bei freier Konvektion in einem gesittigten porésen
Medium bei hohen Rayleigh-Zahlen analytisch untersucht. Fiir den speziellen Fall, daB sich Temperatur
und Geschwindigkeit des Fluids mit x* bzw. x'*~1%? verindern, werden Achnlichkeitsldsungen im
Rahmen der Grenzschichttheorie abgeleitet. Der EinfluB des Massenausflusses auf den Wairmeiibergang
an der Oberfliche und die Grenzschichtdicke wird aufgezeigt. Die Anwendung auf die Warmwasserabgabe
lings einer Bohrung oder eines Spaltes in ein unendlich ausgedehntes Aquifer wird diskutiert.
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BJIUAHHUE TNOIMEPEYHOIO MCTEYEHHUSA MACCHI HA
NMOrPAHUYHBIE CJIOW NMPU CBOBOAHOW KOHBEKUWU B HACBIHIEHHOH
NOPUCTON CPEJE

Anmotauns — [IpoBeeHO TeopeTHYECKOE H3yYeHHE BIHAHMA MONEPEYHOrOo NOTOKA MAacChl MpH
3aaHHOH TeMIIEpaType U CKOPOCTH HA BEPTHKaJIbHbIE MTOr PAHUMHBIE CJIOH B HACHILIEHHOMN MOPHCTON
cpelle NpH HaJHYHH cBOOOIHON KOHBEKLHH H GosibLuMX 4Hcnax Penes. B paMkax TeopHH NnorpaHmy-
HOTO CJ10Sl MOJy4YeHbl aBTOMOE/IbHBIE PELIECHHA OJIA CHEUHAbHOIO Ciay4as, KOTAa 3aJaHHaf TeM-
NepaTypa H CKOPOCTh XHIKOCTH H3MEHAIOTCA, COOTBETCTBEHHO, KaK x* u x* =12, TIoka3zaHO BIMAHHE
NOTOKAa MAacchl HA MHTEHCHBHOCTb IIOBEPXHOCTHOTO TEIJIOOOMEHA M TONMIMHY MOTPAHHYHOTO CIIOA.
PaccMmarpuBaeTcs ¢ilyyalt HCTE4EHHS HAIPETOH BOMAbI NO CKBAXKMHE UMM LIENH B GeCKOHeuHbIH niacT.



